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Abstract. As a greenhouse gas with strong global warming potential, atmospheric methane (CH4) 16 

emissions have attracted a great deal of attention. Remote sensing measurements can provide information 17 

about CH4 sources and emissions. However, accurate assessment of CH4 emissions is challenging due to 18 

the influence of aerosol scattering in the atmosphere. In this study, imaging spectroscopic measurements 19 

from the Airborne Visible/Infrared Imaging Spectrometer–Next Generation (AVIRIS-NG) in the short-20 

wave infrared are used to analyze the impact of aerosol scattering on CH4 retrievals. Using a numerically 21 

efficient two-stream-exact-single-scattering radiative transfer model, we also simulate AVIRIS-NG 22 

measurements for different scenarios and quantify the impact of aerosol scattering using two retrieval 23 

techniques — the traditional Matched Filter (MF) method and the Optimal Estimation (OE) method, 24 

which is a popular approach for trace gas retrievals. The results show that the MF method exhibits up to 25 

50% lower fractional retrieval bias compared to the OE method at high CH4 concentrations (>100% 26 

enhancement over typical background values) and is suitable for detecting strong CH4 emissions, while 27 

the OE method is an optimal technique for diffuse sources (<50% enhancement), showing up to five 28 

times smaller fractional retrieval bias than the MF method. In addition, the impacts of aerosol scattering 29 

as a function of different parameters, such as surface albedo, CH4 concentration, aerosol optical depth, 30 

single scattering albedo and asymmetry parameter, are also discussed.	  31 
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1 Introduction 32 

Atmospheric methane (CH4) is about 85 times more potent per unit mass at warming the Earth than 33 

carbon dioxide (CO2) on a 20-year timescale (IPCC, 2013), implying that reduction in CH4 emissions 34 

could be very efficient to slow down global warming in the near term. Global mean CH4 concentrations 35 

have increased from ~700 ppb in the preindustrial era to more than 1860 ppb as of 2019 (NOAA, 2019). 36 

The most effective sink of atmospheric CH4 is the hydroxyl radical (OH) in the troposphere. CH4 reacts 37 

with OH to reduce the oxidizing capacity of the atmosphere and generate tropospheric ozone. Increasing 38 

emissions of CH4 reduce the concentration of OH in the atmosphere. With less OH to react with, the 39 

lifespan of CH4 could also increase, resulting in greater CH4 concentrations (Holmes et al., 2013). Soils 40 

also act as a major sink for atmospheric methane through the methanotrophic bacteria that reside within 41 

them. 42 

Significant natural CH4 sources include wetlands (Bubier et al., 1994, Macdonald et al., 1998; 43 

Gedney et al., 2004), geological seeps (Kvenvolden and Rogers, 2005; Etiope et al., 2009), ruminant 44 

animals, and termites. In addition, increased surface and ocean temperatures associated with global 45 

warming may increase CH4 emissions from melting permafrost (Woodwell et al., 1998; Walter et al., 46 

2006; Schaefer et al., 2014, Schuur et al., 2015) and methane hydrate destabilization (Kvenvolden, 1988; 47 

Archer, 2007). Human activity also contributes significantly to the total CH4 emissions. Rice agriculture 48 

is one of the most important anthropogenic sources of CH4 (Herrero et al., 2016; Schaefer et al., 2016). 49 

Other sources include landfills (Themelis and Ulloa, 2007), wastewater treatment, biomass burning, and 50 

methane slip from gas engines. Global fugitive CH4 emissions from coal mining (Kort et al., 2014), 51 

natural gas and oil systems (Alvarez et al., 2018), hydraulic fracturing (“fracking”) of shale gas wells 52 

(Howarth et al., 2011; Howarth, 2015, 2019), and residential and commercial natural gas distribution 53 

sectors (He et al., 2019) are also of increasing concern. Although the sources and sinks of methane are 54 

reasonably well known, there are large uncertainties in their relative amounts and in the partitioning 55 

between natural and anthropogenic contributions (Nisbet et al., 2014, 2016). This uncertainty is 56 

exemplified by the CH4 “hiatus”, which refers to the observed stabilization of atmospheric CH4 57 

concentrations from 1999–2006, and the renewed rise thereafter (Kirschke et al., 2013). 58 

Visible/ShortWave InfraRed (VSWIR) imaging spectroscopy, also known as hyperspectral imaging, 59 

has been used for nearly four decades to remotely sense the Earth’s surface and atmosphere. The 380–60 

2500 nm spectral interval captures most of the solar energy, which is subject to absorption and scattering 61 

by the atmosphere and surface, thereby revealing diverse atmospheric and surface properties (Schaepman 62 

et al., 2009). Hyperspectral remote sensing has been utilized for research and applications in a variety of 63 

fields, including geology, agriculture, forestry, coastal and inland water studies, environment hazards 64 
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assessment, and urban studies. In order to study surface properties using imaging spectrometric data, 65 

atmospheric absorption and scattering effects need to be accounted for. The traditional method to do this 66 

is called atmospheric correction, which “removes” atmospheric effects and then converts radiances 67 

measured by the sensors to reflectances of surface materials. Operational atmospheric correction models 68 

include ATREM (Gao et al., 1993), ATCOR (Richter, 1996; Richter, 1998; Richter and Schläpfer, 2002), 69 

ISDAS (Staenz et al., 1998), HATCH (Qu et al., 2003), ACORN (Kruse, 2004) and FLAASH (Perkins 70 

et al., 2012). However, the process of atmospheric correction — where the atmosphere is retrieved first, 71 

followed by the surface — loses information about the atmosphere. Conversely, VSWIR spectral 72 

measurements contain information about atmospheric trace gases, aerosols, and thin cirrus clouds. 73 

By combining large image footprints and fine spatial resolution, airborne imaging spectrometers are 74 

well suited for mapping local CH4 plumes. The Airborne Visible/Infrared Imaging Spectrometer–Next 75 

Generation (AVIRIS-NG) measures reflected solar radiance across more than 400 channels between 380 76 

and 2500 nm (Green et al., 1998; Thompson et al., 2015). Strong CH4 absorption features present between 77 

2100 and 2500 nm can be observed at a 5 nm spectral resolution and full width at half maximum (FWHM). 78 

A number of approaches have been developed to retrieve CH4 from hyperspectral data. Roberts et 79 

al. (2010) used a spectral residual approach between 2000 and 2500 nm and Bradley et al. (2011) 80 

employed a band ratio technique using the 2298 nm CH4 absorption band and 2058 nm CO2 absorption 81 

band. However, these techniques are not suited for terrestrial locations that have lower albedos and have 82 

spectral structure in the SWIR. A cluster-tuned matched filter technique was demonstrated to be capable 83 

of mapping CH4 plumes from marine and terrestrial sources (Thorpe et al., 2013) as well as CO2 from 84 

power plants (Dennison et al., 2013); however, this method does not directly quantify gas concentrations. 85 

Frankenberg et al. (2005) developed an iterative maximum a posteriori differential optical absorption 86 

spectroscopy (IMAP-DOAS) algorithm that allows for uncertainty estimation. Thorpe et al. (2014) 87 

adapted the IMAP-DOAS algorithm for gas detection in AVIRIS imagery. In addition, they developed a 88 

hybrid approach using singular value decomposition and IMAP-DOAS as a complementary method of 89 

quantifying gas concentrations within complex AVIRIS scenes. 90 

Accurate assessment of CH4 emissions is particularly challenging in the presence of aerosols 91 

because the latter introduce uncertainties in the light path if not accounted for. In fact, CH4 emissions are 92 

frequently correlated with pollution due to concurrent aerosol emissions. For large aerosols (such as dust), 93 

the low Ångström exponent values result in high aerosol optical depth (AOD) values even in the 94 

wavelength range from 2000 nm to 2500 nm (Seinfeld and Pandis, 2006; Zhang et al., 2015). Therefore, 95 

it is important to obtain a clear understanding of aerosol impacts on CH4 retrievals. In this study, SWIR 96 

AVIRIS-NG measurements are used to analyze the impact of aerosol scattering on CH4 retrievals. Further, 97 
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using an accurate but numerically efficient radiative transfer (RT) model (Spurr and Natraj, 2011), we 98 

simulate AVIRIS-NG measurements with varying aerosol amounts and quantify the impact of aerosol 99 

scattering using two retrieval techniques, the traditional matched filter method and the optimal estimation 100 

method that is widely used in trace gas remote sensing. 101 

 102 

2 Methods 103 

2.1 Matched Filter (MF) method 104 

Real-time remote detection using AVIRIS-NG measurements are traditionally based on the MF 105 

method (Frankenberg et al., 2016). In this method, the background spectra are assumed to be distributed 106 

as a multivariate Gaussian 𝓝 with covariance matrix S and background mean radiance µ. If H0 is a 107 

scenario without CH4 enhancement and H1 is one with CH4 enhancement, the MF approach is equivalent 108 

to a hypothesis test between the two scenarios: 109 

𝐻$:	𝐿'~𝓝(𝝁,𝚺) (1) 110 

𝐻/:	𝐿'~𝓝(𝝁+ 𝒕𝛼, 𝚺) (2) 111 

where Lm is the measurement radiance; t is the target signature, which is defined in Equation (4); a is the 112 

enhancement value, denoting a scaling factor for the target signature that perturbs the background µ. If 113 

x is a vector of measurement spectra with one element per wavelength, a(x) can be written, based on 114 

maximum likelihood estimates (Manolakis et al., 2014), as follows: 115 

𝛼(𝒙) =
(𝒙 − 𝝁)7𝚺8/𝒕

𝒕7𝚺8/𝒕
(3) 116 

We utilize the same definitions as in Frankenberg et al. (2016). Specifically, the enhancement value a(x) 117 

denotes the thickness and concentration within a volume of equivalent absorption, and has units of ppm 118 

´ m. The target signature t refers to the derivative of the change in measured radiance with respect to a 119 

change in absorption path length due	to an optically thin absorbing layer of CH4. Note that this definition 120 

has the disadvantage that the accuracy of the result degrades when the absorption is strong and further 121 

attenuation becomes nonlinear. At a particular wavelength 𝜆, t can be expressed as: 122 

𝒕(𝜆) = −𝜿(𝜆)𝝁(𝜆), (4) 123 

where 𝜿 is the absorption coefficient for a near-surface plume with units of 	ppm8/	m8/ . This is 124 

different from the units of mD ∙ mol8/  traditionally used for the absorption coefficient in trace gas 125 

remote sensing. Using the ideal gas law to express the volume V (in liters) occupied by one mole of CH4 126 

at the temperature and pressure corresponding to the plume altitude (V = 22.4 at standard temperature 127 

and pressure), and the relations 1 liter = 108H	mH  and 1 ppm = 108I , we obtain the following 128 

expression for unit conversion: 129 
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1	mD ∙ mol8/ = 	
1

𝑉 × 10H 	ppm
8/	m8/ (5) 130 

Figure 1 presents the target signature, which is calculated based on HITRAN absorption cross-sections 131 

(Rothman et al., 2009). The background mean radiance µ used is based on an AVIRIS-NG measurement 132 

made on 4 September 2014 (ang20140904t204546) in Bakersfield, CA. As shown in Figure 2, the 133 

samples for the background covariance matrix S and mean radiance µ are drawn from the dashed green 134 

box near the CH4 emission source, which is located within the solid red box. 135 

2.2 Optimal Estimation (OE) method 136 

The OE method is widely used for the remote sensing retrieval of satellite measurements, such as 137 

from the Orbiting Carbon Observatory-2 (OCO-2; O’Dell et al., 2018), the Spinning Enhanced Visible 138 

and Infra-Red Imager (SEVIRI; Merchant et al., 2013), and the Greenhouse Gases Observing Satellite 139 

(GOSAT; Yoshida et al., 2013). It combines an explicit (typically nonlinear) forward model of the 140 

atmospheric state, a (typically Gaussian) prior probability distribution for the variabilities and a (typically 141 

Gaussian) distribution for the spectral measurement errors. In addition, the Bayesian framework used by 142 

the OE approach allows new information (from measurements) to be combined with existing information 143 

(e.g., from models). In many applications, the forward model is nonlinear, and obtaining the optimal 144 

solution requires iterative techniques such as the Levenberg–Marquardt method (Rodgers, 2000), which 145 

has been routinely applied to study the impacts of measurement parameters on the retrieval process (see, 146 

e.g., Zhang et al., 2015). The iteration in this algorithm follows the below procedure. 147 

𝐱𝐢O𝟏 = 𝐱𝐢 + [(1 + 𝛾)𝐒𝖆8/ + 𝐊𝐢
7𝐒𝛜8/𝐊𝐢]8/{𝐊𝐢

7𝐒𝛜8/[𝐲 − 𝐅(𝐱𝐢)] − 𝐒𝖆8/[𝐱𝐢 − 𝐱𝖆]} (6) 148 

where x is a state vector of surface and atmospheric properties,	𝐒𝖆 is the a priori covariance matrix, 𝐒𝛜 149 

is the spectral radiance noise covariance matrix, K is the Jacobian matrix, 𝐱𝖆 is the a priori state vector 150 

and g is a parameter determining the size of each iteration step. The measured spectral radiance is denoted 151 

as y; F(x) is the simulated radiance obtained from the forward model. For the retrieval of CH4 from 152 

AVIRIS-NG measurements, the state vector includes the total column amounts of CH4 and H2O, while 153 

for the retrievals from synthetic spectra, the H2O concentration is fixed and the state vector only includes 154 

the CH4 total column. The a priori errors are assumed to be 20% for all state vector elements and the 155 

retrieved results are shown as the column averaged mixing ratio (XCH4, in ppm). 156 

 157 

3 Detection and retrieval of CH4 from AVIRIS-NG measurements 158 
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Figure 2 shows a sample of CH4 plume detection on 4 September 2014 by AVIRIS-NG. The location 159 

is to the west of the Kern Front Oil field. This detection is a case study from the NASA/ESA CO2 and 160 

MEthane eXperiment (COMEX) campaign in California during June and August/September 2014, which 161 

includes airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments to 162 

provide a real-time remote detection and measurement for CH4 plumes released from anthropogenic 163 

sources. An RGB image of flight data is displayed in Figure 2a; the emission source is a pump jack, as 164 

described in Thompson et al. (2015). Figure 2b presents results from the MF method, which shows that 165 

the CH4 plume disperses downwind and has a maximum enhancement value of about 2800 ppm ´ m. 166 

Some artifacts also produce large a values in the MF method; these can be removed by an optimization 167 

method such as the column-wise MF method (Thompson et al., 2015). 168 

AVIRIS-NG provides measurements of reflected sunlight in the 380–2500 nm range with 5 nm 169 

spectral resolution; the 2100–2500 nm range with obvious CH4 absorption features are often used to 170 

retrieve CH4 enhancement. Figure 3 displays the measured radiance (a) before normalization and (b) after 171 

normalization, corresponding to two detector elements (in plume and out of plume). Every element is a 172 

cross-track spatial location. The radiance has units of µW cm-2 nm-1 sr-1 and the wavelength spans the 173 

spectral range from 380 to 2500 nm. Comparing the measured spectrum in plume to that out of plume, 174 

there is obvious enhancement of CH4 that is particularly evident in the normalized radiance. CH4 is the 175 

main absorber in the 2100–2500 nm wavelength range, and H2O is the major interfering gas. Figure 3b 176 

indicates the absorption peaks due to H2O and CH4. 177 

We choose the plume center with 500 elements to illustrate results obtained using the MF and OE 178 

methods. The former evaluates the CH4 a value compared to the background CH4 concentration, while 179 

the latter retrieves XCH4. Results for the latter are shown as a multiplicative scaling factor compared to 180 

a typical XCH4 background of 1.822 ppm. We use an accurate and numerically efficient two-stream-181 

exact-single-scattering (2S-ESS) RT model (Spurr and Natraj, 2011). This forward model is different 182 

from a typical two-stream model in that the two-stream approximation is used only to calculate the 183 

contribution of multiple scattering to the radiation field. Single scattering is treated in a numerically exact 184 

manner using all moments of the phase function. This model has been used for remote sensing of 185 

greenhouse gases and aerosols (Xi et al., 2015; Zhang et al., 2015, 2016; Zeng et al., 2017, 2018). 186 

Results from the two retrieval methods (Figure 4) reveal a similar CH4 plume shape, especially for 187 

elements with high CH4 enhancement. However, larger differences in CH4 concentrations are evident in 188 

the OE retrievals (Figure 4b). One reason is that, in the OE method, H2O and CH4 are simultaneously 189 

retrieved; the CH4 retrieval has added uncertainty due to overlapping absorption features between these 190 

two gases. The large maximum value of about 3000 in the MF method also contributes to a reduction in 191 
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relative contrast. It is difficult to compare the CH4 enhancement directly between the two methods since 192 

the background CH4 concentration used in the MF method cannot be quantified exactly. Therefore, we 193 

simulate synthetic spectra (see section 4) using the 2S-ESS RT model to study the impacts of aerosol 194 

scattering as a function of different geophysical parameters. 195 

 196 

4 Aerosol impact analysis 197 

4.1 Synthetic spectra 198 

In a real AVIRIS-NG observation, the exact column concentration of CH4 cannot be controlled. 199 

However, synthetic simulations allow us to manipulate parameters such as CH4 concentration, surface 200 

albedo, AOD, asymmetry parameter (g), and single scattering albedo (SSA), and thereby test aerosol 201 

impacts on CH4 retrievals. The 2S-ESS RT model is used to simulate AVIRIS-NG spectral radiance. In 202 

this model, a prior atmospheric profile with 70 layers from the surface up to 70 km is derived from 203 

National Center for Environmental Prediction reanalysis data (Kalnay et al., 1996); absorption 204 

coefficients for all relevant gases are obtained from the HITRAN database (Rothman et al., 2009). 205 

Monochromatic RT calculations are performed at a spectral resolution of 0.5 cm-1; the radiance spectrum 206 

is then convolved using a Gaussian instrument line shape function with a wavelength-dependent full 207 

width at half maximum (FWHM) from a calibrated AVIRIS-NG data file. The signal to noise ratio (SNR) 208 

is set to be 300, with Gaussian white noise added. This procedure results in a wavelength grid with a 209 

resolution of about 5 nm. The spectral wavelength range used to retrieve CH4 is from 2100 nm to 2500 210 

nm. 211 

The additional atmospheric and geometric variables included in the model are listed in Table 1, 212 

which are held constant unless otherwise mentioned. The observation geometry parameters are taken 213 

from a real AVIRIS-NG measurement. Recent AVIRIS-NG fight campaigns have sensor heights ranging 214 

from 0.43 to 3.8 km; we choose a value of 1 km, the same as the highest level where aerosol is present 215 

in our simulations. The influence of AOD on CH4 retrieval as a function of SSA and g is analyzed in 216 

Section 4.3; in all other cases, SSA and g are held constant at 0.95 and 0.75, respectively. 217 

 218 

4.2 Aerosol impact in the MF method 219 

We simulate synthetic spectra at different AOD, surface albedo and CH4 concentration values, use 220 

the MF method to obtain the CH4 enhancement, and compare differences in a between scenarios with 221 

and without aerosol. The covariance and mean radiance are calculated from a simulated zero AOD 222 

background with albedos from 0.1 to 0.5, and XCH4 set at a typical background value of 1.822 ppm. 223 

Figure 5a shows the enhancement value as a function of XCH4. As the CH4 concentration increases, the 224 
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enhancement value obtained by the MF method at first increases approximately linearly. However, since 225 

the absorption cross-section changes in a nonlinear fashion with concentration, the enhancement value 226 

also becomes nonlinear at larger XCH4. Two aerosol scenarios (AOD = 0, AOD = 0.3) are compared in 227 

Figure 5a, which reveals that the effect of aerosol loading is similar to an underestimation of CH4 in the 228 

retrieval. The underestimation is clearly shown in Figure 5b, where the enhancement  value for fixed CH4 229 

concentration (same concentration as the background) decreases from 0 ppm ´ m to -1532 ppm ´ m 230 

with increasing AOD. To clarify the impact of AOD at different surface albedo values, zoomed in 231 

versions of a as a function of XCH4 are presented in Figures 5c, 5d, 5e and 5f. For the AOD = 0 scenario, 232 

the results are independent of surface albedo. For the scenarios with aerosol loading, the dispersion 233 

between the results at different surface albedos and the changes in the zero-enhancement value (relative 234 

to the background concentration of CH4 = 1.0 × 1.822 ppm) indicates that results from the MF method 235 

are biased more at large AOD and surface albedo values; the maximum bias value is close to 0.06 ´ 236 

1.822 ppm for an AOD of 0.3 and albedo of 0.5, as shown by the dotted line in Figure 5f. 237 

A quantitative analysis of underestimation of CH4 concentration due to aerosol scattering is 238 

presented in Figure 6. The color bar shows the a bias, which is defined as the difference between the 239 

enhancements without and with aerosols, for different CH4 concentrations, surface albedos and AODs. 240 

The a bias increases with increasing surface albedo and AOD, reaching a maximum value of about 700 241 

ppm ´ m for the simulated cases. However, it is interesting that the bias decreases with increasing CH4 242 

concentration, which is different from the results obtained by the OE method (discussed in section 4.3). 243 

This difference arises due to the nonlinear deviation at higher CH4 concentrations using the MF method, 244 

as discussed earlier.  245 

 246 

4.3 Aerosol impact in the OE method 247 

For the simulation of the synthetic spectra, we assume nonzero aerosol loading below 1 km elevation. 248 

The OE method is then used to perform retrievals using the same configuration except that AOD is set 249 

to zero. This approach is similar to neglecting aerosol scattering in the CH4 retrieval; the retrieval bias is 250 

defined as the difference between the true XCH4 in the simulation (nonzero AOD) and the retrieved value 251 

(zero AOD). 252 

It is of interest to study the retrieval bias caused by different aerosol types. We employ the Henyey-253 

Greenstein phase function (Henyer and Greenstein, 1941), where aerosol composition is determined by 254 

two parameters: SSA and g. Figure 7 shows CH4 retrieval biases as a function of SSA and g; surface 255 

albedo and AOD are kept constant at 0.3 and the XCH4 is assumed to be 1.0 × 1.822 ppm. The retrieval 256 

bias increases with SSA and decreases with g, with a maximum bias ratio (ratio of retrieval bias to the 257 
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true value) of about 20%. Synthetic spectra are simulated for different values of CH4 concentration, 258 

surface albedo and AOD. The impacts of aerosol scattering on the retrievals for these scenarios are 259 

demonstrated in Figure 8. Figure 8a shows a 5 ´ 5 panel of boxes. Within each box, XCH4 is constant, 260 

while surface albedo increases from top to bottom and AOD increases from left to right. It is evident that 261 

the retrieved CH4 bias increases with increasing AOD. The CH4 bias induced by differences in the surface 262 

albedo is not as large as that due to AOD variations, but albedo effects are noticeable at large AOD. In 263 

contrast with the MF method, OE retrievals produce larger CH4 biases at higher XCH4 values. The 264 

variation of XCH4 across the boxes is shown in Figure 8b. We also show a zoomed in plot of the bottom 265 

right box (XCH4 = 5.8 ´ 1.822 ppm) in Figure 8c, which illustrates the AOD and surface albedo changes 266 

within a box. These changes are identical for all boxes. 267 

 268 

4.4 Comparison of the two retrieval techniques 269 

Figure 9 presents the bias ratios for the two retrieval techniques at different AODs. In the MF 270 

method, we assume the truth to be the retrieved a for the case with zero AOD. The bias ratio is therefore 271 

defined as the ratio of the bias in retrieved a to the true value of a. On the other hand, in the OE method, 272 

the bias ratio is the ratio of the retrieved XCH4 difference (between scenarios without and with aerosol) 273 

to the real XCH4. In all cases the surface albedo is set to 0.3. From Figure 9 it is clear that the bias ratio 274 

decreases with increasing CH4 concentration and has higher values at larger AODs. The bias ratio for the 275 

MF method is up to 50% less than that for the OE method when the CH4 concentration is high (>~2 ´ 276 

1.822 ppm). On the other hand, the OE method performs better when enhancements are small and XCH4 277 

is close to the background value. For example, the bias ratio for the MF method has a high value of about 278 

0.43 at AOD = 0.3 for a 10% enhancement (XCH4 = 1.1 ́  1.822 ppm); the OE value for the same scenario 279 

is 0.086. The two retrieval techniques seem to be complementary, with differing utilities for different 280 

enhancements. 281 

 282 

5 Discussion 283 

Remote sensing measurements from airborne and satellite instruments are widely used to detect CH4 284 

emissions. In our study, the traditional MF and the OE methods are used to quantify the effects of aerosol 285 

scattering on CH4 retrievals based on simulations of AVIRIS-NG measurements. The results show that 286 

the retrieval biases increase with increasing AOD and albedo for both techniques. In the OE method the 287 

biases increase with increasing CH4 concentration and SSA, but decrease with increasing aerosol 288 

asymmetry parameter. The CH4 retrieval bias increases with increasing XCH4 in the OE method but 289 

decreases for the same scenario in the MF method. The contrasting trend is attributed to nonlinear effects 290 
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at higher XCH4 values in the MF method. We also present bias ratios for the two techniques. The MF 291 

method shows smaller bias ratios at large CH4 concentrations than the OE method; it is, therefore, an 292 

optimal method to detect strong CH4 emission sources. On the other hand, the OE method seems to be 293 

more suitable for detecting diffuse sources. Further, the MF method relies on a comparison with the 294 

background CH4 concentration. It is difficult to get an accurate estimate of the background XCH4 value 295 

in polluted atmospheric environments. In contrast, the OE method provides retrievals based solely on the 296 

atmospheric scenario of interest. 297 

This study focused on a comparison of retrieval techniques. It is also important to accurately 298 

represent the physics of atmospheric RT, especially for scenarios with significant aerosol scattering. RT 299 

models traditionally used in retrievals of imaging spectroscopic data use simplified radiation schemes 300 

and predefined aerosol models, which may introduce inaccurate in the representation of atmospheric 301 

physics. The 2S-ESS model provides the capability to quantify aerosol impacts on CH4 retrieval for 302 

different aerosol types, optical depths and layer heights. In future work, we will compare retrievals using 303 

the 2S-ESS model against other commonly used models such as MODTRAN. We will also evaluate the 304 

impact of varying instrument spectral resolution and signal to noise ratio for simultaneous retrieval of 305 

CH4 and AOD. This will be relevant for the design of imaging spectrometers for planned future missions 306 

such as the NASA designated Surface Biology and Geology (SBG) mission. 307 
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 576 
 577 

Figure 1: The target signature used for the Matched Filter method. 578 
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 580 

 581 

Figure 2: (a) RGB image of flight data from 4 September 2014 (ang20140904t204546). Adapted from 582 

Thompson et al. (2015). (b) CH4 enhancement value a (ppm ´ m) obtained by the MF method. An emission 583 

source is shown in the solid red box and the background region near the target for the MF calculation is 584 

indicated by the dashed green box. 585 

	  586 

(a) 

 

a
 (ppm

 ´
m

) 

(b) 

 

https://doi.org/10.5194/amt-2020-51
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 587 

 588 

Figure 3: (a) Real radiance and (b) normalized radiance at cross-track detector elements (in and out of plume) 589 

from the sample AVIRIS-NG measurement. The colored arrows in (b) show the main absorption features due 590 

to H2O (purple) and CH4 (green). 591 
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 593 

 594 

Figure 4: Retrieval image for the plume center (500 elements) based on the (a) MF method and (b) OE method. 595 
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 598 

Figure 5: (a) a as a function of XCH4 for AOD = 0 and AOD = 0.3 (surface albedo = 0.3). (b) a as a function 599 

of AOD (XCH4 = 1.0 × 1.822 ppm, surface albedo = 0.3). Zoomed in versions of a as a function of XCH4 for 600 

different albedos (0.1-0.5), where (c) AOD = 0, (d) AOD = 0.1, (e) AOD = 0.2, and (f) AOD = 0.3. 601 
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 604 

Figure 6: Bias in a as a function of XCH4 and surface albedo for (a) AOD = 0.1, (b) AOD = 0.2, and (c) AOD 605 

= 0.3. 606 
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 609 

Figure 7: CH4 retrieval biases for different values of g and SSA. Albedo, AOD = 0.3, XCH4 = 1.0 × 1.822 ppm.	  610 
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 611 

 612 

Figure 8: (a) Bias in retrieved XCH4 for different values of XCH4, AOD and surface albedo. g = 0.75, SSA = 613 

0.95. (b) XCH4 for each box in (a). (c) Zoomed in plot of bottom right box (XCH4 = 5.8 ´ 1.822 ppm). The x 614 

and y axes show the variation of AOD and surface albedo, respectively. These changes are identical for every 615 

box in (a). 616 
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 618 

 619 

Figure 9: (a) Bias ratio as a function of CH4 concentration for the two retrieval techniques, where the XCH4 620 

ranges from 1.5 to 5 (´ 1.822 ppm). (b) Same as (a), but for XCH4 ranging from 1.1 to 2 (´ 1.822 ppm). Surface 621 

albedo is set to 0.3 for all cases; results for the MF and OE methods are shown by solid and dashed lines, 622 

respectively. 623 
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 625 

Attribute                    Values 

Sensor height 1 km 

View zenith angle  11.91° 

Solar zenith angle  30.75° 

Relative azimuth angle 22.87° 

Aerosol loading region from surface to 1 km 

SSA 0.95 

g 0.75 

Table 1: Inputs for the 2S-ESS model simulation. 626 
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